
2019-11-22

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math

Prof. Hiren Patel, Ph.D.

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

A list-size
member variable

2
A list size member variable

Outline

• In this lesson, we will:

– Explain why the size() function is slow

– Show how we can speed this up with a size_ member variable

– Step through all member functions that must be modified to
accommodate this variable:

• The constructor

• size()

• push_front(…)

• pop_front()

– Determine the cost of adding this member variable

3
A list size member variable

Our linked list class

• Reviewing our linked list class
class Node;
class Linked_list;

class Linked_list {
public:

Linked_list(); // Constructor
~Linked_list(); // Destructor
bool empty() const;
std::size_t size() const;
double front() const;
std::string to_string() const;
std::size_t find(double value) const;
double operator[](std::size_t const n) const;

void push_front(double const new_value);
bool pop_front();
void clear();

private:
Node *p_list_head_; // Pointer to head node

};

4
A list size member variable

Problem

• To get the size, we must count all the entries in the linked list

– This could be hundreds, thousands or more

• Could this not potentially slow down an application?

– Can we speed up the run-time of size()?

2019-11-22

2

5
A list size member variable

Problem

• One solution is to add a size_ member variable:
class Node;

class Linked_list;

class Linked_list {

public:

// ...declarations of public member functions...

private:

Node *p_list_head_; // Pointer to head node

std::size_t size_;

};

6
A list size member variable

List size member variable

• Now:

– The size_ member variable can be immediately returned by the
size() member function

– We must initialize size_ inside the constructor

– We must update size_ whenever we:

• Push a new node

• Pop a node from the linked list

7
A list size member variable

Constructor and destructor

• The constructor must initialize the list size:

Linked_list::Linked_list():

p_list_head_{nullptr},

size_{0} {

// Nothing else for the constructor to do

}

• In C++, you should initialize all member variables before the body of
the constructor executes

8
A list size member variable

Getting the size

• Now the size() function can simply return that variable:
void Linked_list::size() const {

return size_;
}

2019-11-22

3

9
A list size member variable

Inserting a node

• When pushing a new node at the front of the linked list, we must
increment the list size:

void Linked_list::push_front(double const new_value) {
p_list_head_ = new Node{new_value, p_list_head_};
++size_;

}

10
A list size member variable

Removing a node

• When popping a node, we must decrement the list size
bool Linked_list::pop_front() {

if (empty()) {

return false;

} else {

assert(size() >= 1);

Node *p_current_head{ p_list_head_ };

p_list_head_ = p_list_head_->p_next_node_;

delete p_current_head;

p_current_head = nullptr;

--size_;

return true;

}

}

11
A list size member variable

Clearing all nodes in a list

• Why do we not have to update clear()?

bool Linked_list::clear() {

while (!empty()) {

pop_front();

}

}

12
A list size member variable

Clearing all nodes in a list

• We can speed up clear()?
double Linked_list::operator[](std::size_t const n) const {

if (size() <= n) {

return 0.0;

} else {

std::size_t k{0};

Node *p_current_node{ p_list_head_ };

while (p_current_node != nullptr) {

if (k == n) {

return p_current_node->value_;

}

++k;

p_current_node = p_current_node->p_next_node_;

}

assert(false); // We should never get here

return 0.0;

}

}

2019-11-22

4

13
A list size member variable

Our linked list class

• Our public member functions have not changed their behavior:
– The interface has not changed

class Linked_list {
public:

Linked_list(); // Constructor
~Linked_list(); // Destructor
bool empty() const;
std::size_t size() const;
double front() const;
std::string to_string() const;
std::size_t find(double value) const;
double operator[](std::size_t const n) const;

void push_front(double const new_value);
bool pop_front();
void clear();

private:
Node *p_list_head_; // Pointer to head node
std::size_t size_;

};

14
A list size member variable

Benefit of encapsulation

• Adding this member variable and modifying our member functions
in no way affected the way users interact with this class

• The only differences are:

– It uses a little more memory (4 to 8 bytes)

– Some functions are trivially slower (one extra instruction)

– The size() function is significantly faster now

15
A list size member variable

Summary

• Following this lesson, you now

– Understand we can modify a class without affecting the user

– Know how a list size member variable can significantly decrease the
execution time of the size() function

– Understand that the cost is a small increase in memory and run time

16
A list size member variable

References

[1] No references?

2019-11-22

5

17
A list size member variable

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

18
A list size member variable

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

